CARIWIG Case Study Report Barbados Coastal Protection

Coastal Zone Management Unit

Dr. Lorna Inniss Lisa Bartlett

Aim and objectives

 To assess the utility of the Regional Climate Model, Weather Generator and **Tropical Storm** Model in coastal protection and **Coastal Zone** risk ement.

Management Unit BARBADOS

- To compare the model outputs with those used in coastal management;
- To check the datasets generated against those for other models

Which tools were used? How & why? Regional Climate Model: Will be used to validate

- Regional Climate Model: Will be used to validate trends in local climate observed at two weather stations (Husbands and Grantley Adams International Airport) and to predict future climate scenarios.
 - Values simulated from a single 25km grid square (area average)
- Weather Generator: Will be calibrated on observed daily data for a baseline period (1980-2010) and will be used to correct for biases in the Regional Climate Model.
- Tropical Storm Model: Used to generate 'what if' scenarios of historical storms at various categories and forward moving speeds.

The findings

- Normal thresholds for wind speed and direction need to be determined.
 - Using observed data, determine the annual frequency of threshold exceedance. (Preliminary analysis shows this will be during the winter season)
- Outputs of RCM and WG will be compared with observed wind speed.
- Outputs of RCM will be compared with observed wind direction.
- We plan to use projections from RCM and WG to make qualitative inferences on potential effects of future changes in wind climate.

Wind Rose

Selected Data: 03 May 2005 08PM to 31 Dec 2013 10PM

Calm Wind Conditions: Wind speed = 0.0 m/s

Source File: C:\Projects\caymans\Metocean\Hindcast\Old\Buoy\BUOY-42056.bts Entire Range: 03 May 2005 08PM to 31 Dec 2013 10PM

Variables: WSPD WDIR

Wave climate at Barbados

Use of Wind Data

- Wind data used to hindcast wave climate period, height, direction and duration of locally generated waves
- Forecast nearshore impact of distantly generated waves
- Based on the two above plus bathymetry and sediment transport, design shoreline stabilization structures to withstand ambient wave climate

Implications for policy & planning

- If we take the results as is, then local geographic distinctions in vulnerability are not possible using the models;
 - Coastal policy and plan must be island-wide;
 - Disaster risk management planning may be sectoral, but not
 - Early warning cannot be on a local scale;
 - No improvement in warnings of impending high sea level;

Feedback on the tools

- Neither Regional Climate Model or Weather Generator provides projections of sea level rise, storm surge or near-shore waves
 - Variables we are most interested in.
 - Models currently do not have the scope for these aspects.
- Tropical Storm Model
 - Variable wind speed vs time does not show much variation over island no matter forward moving speed as island is very small.
 - Wind vs time is however important in determining vave climate during extreme events.

What more could be done?

- Any further downscaling possible?
- Possible links with nearshore wave climate model

- Match observed wind speed and direction to observed wave heights and direction
- Possible distinction in waves by coast?

Management Unit BARBADOS

 Identification of island 'hotspots' for DRM and Coastal Zone
 A planning (areas more prone to high ives consistently due to wind at that cation)